1个回答
展开全部
分子是b,还是2x-b
如果是2x-b
那么f'(x)=-2(x-1)[x-(b-1)]/[(x-1)^4]
当b-1<1即b<2时,
在b-1<x<1范围类 f'(x)>0,所以f(x)的增区间是(b-1,1)
减区间是(负无穷大,b-1] , (1,正无穷大)
当b-1=1时 恒有f'(x)<0,所以f(x)为减函数,减区间是(负无穷大,1) ,
(1,正无穷大)
不包括1,因为x=1时分母为零,函数无意义
当b-1>1即b>2时,
在1<x<b-1范围类 f'(x)>0,所以f(x)的增区间是(1,b-1)
减区间是(负无穷大,1] , [b-1,正无穷大)
如果是2x-b
那么f'(x)=-2(x-1)[x-(b-1)]/[(x-1)^4]
当b-1<1即b<2时,
在b-1<x<1范围类 f'(x)>0,所以f(x)的增区间是(b-1,1)
减区间是(负无穷大,b-1] , (1,正无穷大)
当b-1=1时 恒有f'(x)<0,所以f(x)为减函数,减区间是(负无穷大,1) ,
(1,正无穷大)
不包括1,因为x=1时分母为零,函数无意义
当b-1>1即b>2时,
在1<x<b-1范围类 f'(x)>0,所以f(x)的增区间是(1,b-1)
减区间是(负无穷大,1] , [b-1,正无穷大)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询