已知a大于2求证loga(a-1)<log(a+1)a
2013-11-04 · 知道合伙人金融证券行家
关注
展开全部
a>2 a-1>1 a+1>1
loga(a-1)>0 loga(a+1)>0
先证loga(a-1)<loga(a+1)
由均值不等式,得
loga(a-1)loga(a+1)<[loga(a-1)+loga(a+1)]^2/4
=loga[(a-1)(a+1)]^2/4
=loga(a^4)/4
=4/4
=1
因此loga(a-1)loga(a+1)<1
即
loga(a-1)<1/loga(a+1)
loga(a-1)<log(a+1)a
loga(a-1)>0 loga(a+1)>0
先证loga(a-1)<loga(a+1)
由均值不等式,得
loga(a-1)loga(a+1)<[loga(a-1)+loga(a+1)]^2/4
=loga[(a-1)(a+1)]^2/4
=loga(a^4)/4
=4/4
=1
因此loga(a-1)loga(a+1)<1
即
loga(a-1)<1/loga(a+1)
loga(a-1)<log(a+1)a
展开全部
由mn<=[(m+n)/2]^2得
log<a>(a-1)*log<a>(a+1)<={[log<a>(a-1)+log<a>(a+1)]/2}^2
={log<a>[(a-1)(a+1)]/2}^2
={[log<a>(a^2-1)]/2}^2
<{[log<a>(a^2)]/2}^2=1,
a>2,∴0<log<a>(a+1),上式变为
log<a>(a-1)<1/log<a>(a+1),换底得
log<a>(a-1)<log<a+1>a.
log<a>(a-1)*log<a>(a+1)<={[log<a>(a-1)+log<a>(a+1)]/2}^2
={log<a>[(a-1)(a+1)]/2}^2
={[log<a>(a^2-1)]/2}^2
<{[log<a>(a^2)]/2}^2=1,
a>2,∴0<log<a>(a+1),上式变为
log<a>(a-1)<1/log<a>(a+1),换底得
log<a>(a-1)<log<a+1>a.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询