f(x)=lnx²的导数?
f(x)=lnx²的导数:2/x。
(lnx²)'
=(lnx²)'(x²)'
=(1/x²)*2x
=2/x
扩展资料
常用导数公式:
1、y=c(c为常数) y'=0
2、y=x^n y'=nx^(n-1)
3、y=a^x y'=a^xlna,y=e^x y'=e^x
4、y=logax y'=logae/x,y=lnx y'=1/x
5、y=sinx y'=cosx
6、y=cosx y'=-sinx
7、y=tanx y'=1/cos^2x
8、y=cotx y'=-1/sin^2x
9、y=arcsinx y'=1/√1-x^2
10、y=arccosx y'=-1/√1-x^2
f(x)=lnx²的导数:2/x。
(lnx²)'
=(lnx²)'(x²)'
=(1/x²)*2x
=2/x
扩展资料:
链式法则(chain rule)
若h(a)=f[g(x)]
则h'(a)=f’[g(x)]g’(x)
链式法则用文字描述,就是“由两个函数凑起来的复合函数,其导数等于里函数代入外函数的值之导数,乘以里边函数的导数。”
常用导数公式:
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna,y=e^x y'=e^x
4.y=logax y'=logae/x,y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
是复合函数求导,一层层算
先对外层函数整体求一次,再对内层函数求一次
外层看成lnu,求导得1/u(其中u=x^2)再,对内层函数求,即对x^2求导,得2x,最后乘起来,得答案
例如:y=sin2x求导 :y'=cos2x (2x)'=2cos2x
y=ln(x^2+3x)求导:y'=1/x^2+3x 乘(x^2+3x)'=1/x^2+3x 乘(2x+3)
还可以写成两个函数,实质是一样的
不懂可以追问