若cos(π/4+x)=3/5,17/12π<x<7/4π,求(sin2x+2sinx)/(1-
若cos(π/4+x)=3/5,17/12π<x<7/4π,求(sin2x+2sinx)/(1-tanx)的值...
若cos(π/4+x)=3/5,17/12π<x<7/4π,求(sin2x+2sinx)/(1-tanx)的值
展开
1个回答
展开全部
17π/12<x<7π/4,得5π/3<x+π/4<2π
cos(x-π/4)=cos[(x+π/4)-π/2]=sin(x+π/4)=-√[1-cos²(x+π/4)]=-√[1-(3/5)²]=-4/5
sin(2x)=-cos(2x+π/2)=-cos[2(x+π/4)]=1-2cos²(x+π/4)=1-2•(3/5)²=7/25
[sin(2x)+2sin²x]/(1-tanx)
=2(sinxcosx+sin²x)/(1-sinx/cosx)
=2(cosx+sinx)/(1/sinx-1/cosx)
=2(cosx+sinx)sinxcosx/(cosx-sinx)
=cos(x-π/4)sin(2x)/cos(x+π/4)
=-4/5•7/25/(3/5)
=-28/75
cos(x-π/4)=cos[(x+π/4)-π/2]=sin(x+π/4)=-√[1-cos²(x+π/4)]=-√[1-(3/5)²]=-4/5
sin(2x)=-cos(2x+π/2)=-cos[2(x+π/4)]=1-2cos²(x+π/4)=1-2•(3/5)²=7/25
[sin(2x)+2sin²x]/(1-tanx)
=2(sinxcosx+sin²x)/(1-sinx/cosx)
=2(cosx+sinx)/(1/sinx-1/cosx)
=2(cosx+sinx)sinxcosx/(cosx-sinx)
=cos(x-π/4)sin(2x)/cos(x+π/4)
=-4/5•7/25/(3/5)
=-28/75
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询