设函数f(x)=x^3-3ax^2+3bx的图像与直线12x+y-1=0相切于点(1,f(1)),(1)求a,b(2)讨论函数f(x)的单调性及极值

Janni睿
2010-08-30 · TA获得超过569个赞
知道小有建树答主
回答量:179
采纳率:0%
帮助的人:268万
展开全部
f(1)=1-3a+3b
y|(x=1) =-11 (*)
相切与(1,-11)
直线斜率为k=-12
对f(x)求导 得:
f'(x)=3x^2-6ax+3b
f'(1)=-12 (**)

(*)与(**) 联立
1-3a+3b=-11
3-6a+3b=-12

a=1 b=-3
f(x)=x^3-3x^2-9x

(2)对f(x) 求导得:f'(x)=3x^2-6x-9
令f'(x)=0
x=-1 和 3
f(x)在(-无穷,-1)单调递增
在(-1,3)单调递减
在(3,+无穷)单调递增
无最值
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
岗释陆式63
2010-08-30 · TA获得超过3784个赞
知道小有建树答主
回答量:993
采纳率:0%
帮助的人:1483万
展开全部
点(1,f(1))代人直线得
12+y-1=0
y=-11
代人f(x)得
-11=1-3a+3b
a-b=4 (1)
f(x)的导数为f'(x)=3x^2-6ax+3b
f'(1)=3-6a+3b=-12
2a-b=5 (2)
(1)(2)解得
a=1,b=-3

2)f(x)=x^3-3x^2-9x
f'(x)=3x^2-6x-9=0
x1=3,x2=-1
x>3时 f'(x)>0, f(x)单调递增
-1<x<3 f'(x)<0,f(x)单调递减
x<-1时 f'(x)>0,f(x)单调递增
x=3时,有极小值f(3)=27-27-27=-27
x=-1时,有极大值f(1)=-1-3+9=5
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式