在等腰梯形ABCD中,AD∥BC,AD=3,AB=CD=4,BC=5,∠B的平分线交DC于点E,交AD的延长线于点F.(1)如图
在等腰梯形ABCD中,AD∥BC,AD=3,AB=CD=4,BC=5,∠B的平分线交DC于点E,交AD的延长线于点F.(1)如图(1),若∠C的平分线交BE于点G,写出图...
在等腰梯形ABCD中,AD∥BC,AD=3,AB=CD=4,BC=5,∠B的平分线交DC于点E,交AD的延长线于点F.(1)如图(1),若∠C的平分线交BE于点G,写出图中所有的相似三角形(不必证明);(2)在(1)的条件下求BG的长;(3)若点P为BE上动点,以点P为圆心,BP为半径的⊙P与线段BC交于点Q(如图(2)),请直接写出当BP取什么范围内值时,①点A在⊙P内;②点A在⊙P内而点E在⊙P外.
展开
展开全部
(1)△ABF∽△GBC,△FDE∽△CGE∽△BCE.
(2)∵BE平分∠B,
∴∠ABE=∠EBC,
∵AD∥BC,
∴∠AFB=∠EBC,
∴∠ABE=∠AFB,
∴AB=AF.
∴AF=4,DF=1.
∵AD∥BC,
∴DF:BC=DE:EC,
∴DE=
,CE=
.
∵AD∥BC,AB=CD,
∴∠BCD=∠ABC.
∵CG平分∠BCD,BE平分∠ABC,
∴∠CBG=∠BCG,
∴BG=CG.
设BG=CG=x,则由△FDE∽△CGE,得
DF:CG=DE:GE,
∴GE=
x.
又由△CGE∽△BCE,得
EC2=EG?EB,
即(
)2=
x?(x+
x),
∴x=
,
即BG=
.
(3)①连接AP,当BP=AP时,点A在圆P上,此时△ABP∽△ABF,求得BP=
,
即BP>AP时,点A在⊙P内.
∴当
<BP≤
时,点A在⊙P内.
②根据①求得BE=
(2)∵BE平分∠B,
∴∠ABE=∠EBC,
∵AD∥BC,
∴∠AFB=∠EBC,
∴∠ABE=∠AFB,
∴AB=AF.
∴AF=4,DF=1.
∵AD∥BC,
∴DF:BC=DE:EC,
∴DE=
2 |
3 |
10 |
3 |
∵AD∥BC,AB=CD,
∴∠BCD=∠ABC.
∵CG平分∠BCD,BE平分∠ABC,
∴∠CBG=∠BCG,
∴BG=CG.
设BG=CG=x,则由△FDE∽△CGE,得
DF:CG=DE:GE,
∴GE=
2 |
3 |
又由△CGE∽△BCE,得
EC2=EG?EB,
即(
10 |
3 |
2 |
3 |
2 |
3 |
∴x=
10 |
即BG=
10 |
(3)①连接AP,当BP=AP时,点A在圆P上,此时△ABP∽△ABF,求得BP=
4 |
5 |
10 |
即BP>AP时,点A在⊙P内.
∴当
4 |
5 |
10 |
10 |
②根据①求得BE=
5 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|