如图,AB、AC分别是⊙O的直径和弦,D是劣弧AC的中点,DE⊥AB于H,交⊙O于点E,交AC于点F.(1)图中有哪
如图,AB、AC分别是⊙O的直径和弦,D是劣弧AC的中点,DE⊥AB于H,交⊙O于点E,交AC于点F.(1)图中有哪些必相等的线段?(要求:不要标注其它字母,找结论的过程...
如图,AB、AC分别是⊙O的直径和弦,D是劣弧AC的中点,DE⊥AB于H,交⊙O于点E,交AC于点F.(1)图中有哪些必相等的线段?(要求:不要标注其它字母,找结论的过程中所作的辅助线不能出现在结论中,不必写出推理过程.)(2)若过C点作⊙O的切线PC交ED延长线于P点,(请补全图形),求证:PF2=PD?PE;(3)已知AH=1,BH=4,求PC的长.
展开
展开全部
解答:(1)解:AO=BO,DH=EH,DF=AF,AC=DE;
(2)证明:连EC,AE,
则∠PFC是△ECF的一个外角,于是∠PFC=∠ACE+∠FEC;
∵DH⊥AB,AB是⊙O的直径,
∴A是DE中点,即弧AD=弧AE,
∴∠AED=∠ACE,
∴∠ACE+∠FEC=∠AED+∠DEC=∠AEC,
∵PC是⊙O的切线,
∴∠PCA=∠AEC.
∴∠PCA=∠PFC,
∴PC=PF.
∵PC是切线
∴PC2=PD?PE,
∴PF2=PD?PE;
(3)解:在⊙O中,AH?HB=DH?HE=DH2,
∴DH=
=
=2
设AF=x,则FH=2-x.
在Rt△AFH中,AH2+FH2=AF2
∴1+(2-x)2=x2,
∴x=
,即AF=
.
于是DF=
.
由(1)(2)知HE=HD=2,
(PD+
)2=PD?(PD+4),
解得PD=
.
∴PF=PD+DF=
.
∴PC=PF=
.
(2)证明:连EC,AE,
则∠PFC是△ECF的一个外角,于是∠PFC=∠ACE+∠FEC;
∵DH⊥AB,AB是⊙O的直径,
∴A是DE中点,即弧AD=弧AE,
∴∠AED=∠ACE,
∴∠ACE+∠FEC=∠AED+∠DEC=∠AEC,
∵PC是⊙O的切线,
∴∠PCA=∠AEC.
∴∠PCA=∠PFC,
∴PC=PF.
∵PC是切线
∴PC2=PD?PE,
∴PF2=PD?PE;
(3)解:在⊙O中,AH?HB=DH?HE=DH2,
∴DH=
AH?HB |
1×4 |
设AF=x,则FH=2-x.
在Rt△AFH中,AH2+FH2=AF2
∴1+(2-x)2=x2,
∴x=
5 |
4 |
5 |
4 |
于是DF=
5 |
4 |
由(1)(2)知HE=HD=2,
(PD+
5 |
4 |
解得PD=
25 |
24 |
∴PF=PD+DF=
55 |
24 |
∴PC=PF=
55 |
24 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询