设F1,F2分别是双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使|OP|=|OF1

设F1,F2分别是双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使|OP|=|OF1|(O为原点),且|PF1|=3|PF2|... 设F1,F2分别是双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使|OP|=|OF1|(O为原点),且|PF1|=3|PF2|,则双曲线的离心率为______. 展开
 我来答
雨的眷恋龙1709
推荐于2016-08-09 · TA获得超过187个赞
知道答主
回答量:122
采纳率:0%
帮助的人:154万
展开全部
∵|OF1|=|OF2|=|OP|
∴∠F1PF2=90°
设|PF2|=t,则|F1P|=
3
t,a=
3
t?t
2

∴t2+3t2=4c2
∴t=c
∴e=
c
a
=
3
+1.
故答案为:
3
+1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式