已知直线l:y=ax+1-a(a∈R),若存在实数a使得一条曲线与直线l有两个不同的交点,且以这两个交点为端点

已知直线l:y=ax+1-a(a∈R),若存在实数a使得一条曲线与直线l有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于|a|,则称此曲线为直线l的“绝对曲线”... 已知直线l:y=ax+1-a(a∈R),若存在实数a使得一条曲线与直线l有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于|a|,则称此曲线为直线l的“绝对曲线”.下面给出的三条曲线方程:①y=-2|x-1|;②(x-1)2+(y-1)2=1;③x2+3y2=4.其中直线l的“绝对曲线”有______.(填写全部正确选项的序号) 展开
 我来答
柏博厚0i9
2014-09-11 · TA获得超过162个赞
知道答主
回答量:117
采纳率:100%
帮助的人:120万
展开全部
由y=ax+1-a=a(x-1)+1,可知直线l过点A(1,1).
对于①,y=-2|x-1|=
-2x+2,x≥1
2x-2,x<1
,图象是顶点为(1,0)的倒V型,而直线l过顶点A(1,1).
所以直线l不会与曲线y=-2|x-1|有两个交点,不是直线l的“绝对曲线”;
对于②,(x-1)2+(y-1)2=1是以A为圆心,半径为1的圆,
所以直线l与圆总有两个交点,且距离为直径2,所以存在a=±2,使得圆(x-1)2+(y-1)2=1与直线l有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于|a|.
所以圆(x-1)2+(y-1)2=1是直线l的“绝对曲线”;
对于③,将y=ax+1-a代入x2+3y2=4,
得(3a2+1)x2+6a(1-a)x+3(1-a)2-4=0.
x1+x2=-
6a(1-a)
3a2+1
x1x2=
3(1-a)2-4
3a2+1

若直线l被椭圆截得的线段长度是|a|,
a2=(x1-x2)2+(y1-y2)2=(x1-x2)2+(ax1+1-a-ax2-1+a)2
=(a2+1)[(x1+x2)2-4x1x2]
=(a2+1)[
36a2(1-a)2
(3a2+1)2
-4
3(1-a)2-4
3a2+1
]

化简得
a2
a2+1
=(
6a+2
3a2+1
)2

令f(a)=
a2
a2+1
-(
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消