如图,在?ABCD中,E,F分别是AB,CD的中点,G,H分别是AF,CE的中点,连结EG,FH.(1)四边形EHFG是不是
如图,在?ABCD中,E,F分别是AB,CD的中点,G,H分别是AF,CE的中点,连结EG,FH.(1)四边形EHFG是不是平行四边形?如果是,请给出证明;如果不是,请说...
如图,在?ABCD中,E,F分别是AB,CD的中点,G,H分别是AF,CE的中点,连结EG,FH.(1)四边形EHFG是不是平行四边形?如果是,请给出证明;如果不是,请说明理由;(2)求四边形EHFG的面积与平行四边形ABCD的面积之比.
展开
1个回答
展开全部
解:(1)四边形EHFG为平行四边形,理由为:
∵ABCD为平行四边形,
∴DC∥AB,DC=AB,
∵E、F分别为AB、CD的中点,
∴DF=CF=
DC,AE=BE=
AB,
∴FC=AE,
∵FC∥AE,
∴四边形AECF为平行四边形,
∴AF∥EC,且AF=EC,
∵G、H分别为AF、CE的中点,
∴GF=EH,
则四边形EHFG为平行四边形;
(2)∵E、F为AB、CD的中点,
∴S四边形AECF=S△ADF+S△EBC(底乘高可算得),即S平行四边形AECF:S平行四边形ABCD=1:2,
过F做FJ⊥CE于J点,FJ为四边形EHFG及四边形AECF的高,
又∵G、H为中点,
∴S四边形EHFG:S四边形AECF=1:2(FJ?EC=FJ?2?EH),则S四边形EHFG:S四边形ABCD=1:4.
∵ABCD为平行四边形,
∴DC∥AB,DC=AB,
∵E、F分别为AB、CD的中点,
∴DF=CF=
1 |
2 |
1 |
2 |
∴FC=AE,
∵FC∥AE,
∴四边形AECF为平行四边形,
∴AF∥EC,且AF=EC,
∵G、H分别为AF、CE的中点,
∴GF=EH,
则四边形EHFG为平行四边形;
(2)∵E、F为AB、CD的中点,
∴S四边形AECF=S△ADF+S△EBC(底乘高可算得),即S平行四边形AECF:S平行四边形ABCD=1:2,
过F做FJ⊥CE于J点,FJ为四边形EHFG及四边形AECF的高,
又∵G、H为中点,
∴S四边形EHFG:S四边形AECF=1:2(FJ?EC=FJ?2?EH),则S四边形EHFG:S四边形ABCD=1:4.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询