cosx分之一是有界函数
错。无界。
y= x cosx
取x(n) = 2nπ, 当n->+∞时, y(n) = x(n) cos(x(n)) = 2nπ ->+∞
故 x cosx 在(-∞,+∞)上无界。
x→+∞limy‘=-xsinx+cosx ∈R
图象为在y=x与y=-x间以2π为周期来回振荡,即-▏x▏≦y≦▏x▏
因为y=x与y=-x向正负方向的极限都不收敛,所以y=xcosx在(-∞,+∞)内无界。
既无上界也无下界。
1/cosx不是有界函数。因为1/cosx可以取无穷。
有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。
有界函数并不一定是连续的。根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。
2023-07-25 广告
错。1/cosx不是有界函数。因为1/cosx可以取无穷。
有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。
有界函数并不一定是连续的。根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。
扩展资料:
函数的有界性与其他函数性质之间的关系
函数的性质:有界性,单调性,周期性,连续性,可积性。
闭区间上的单调函数必有界。其逆命题不成立。
闭区间上的连续函数必有界。其逆命题不成立。
闭区间上的可积函数必有界。其逆命题不成立。
无界函数
类似的我们可以定义无界函数: 设ƒ为定义在D上的函数,若对于任何M(无论M多大),都存在x0∈D,使得|ƒ(x)|≥M。相关详细定义请查看百度百科无界函数