已知函数f(x)=sin2x+23sinxcosx+sin(x+π4)sin(x-π4),x∈R.(Ⅰ)求f(x)的最小正周期和单调增
已知函数f(x)=sin2x+23sinxcosx+sin(x+π4)sin(x-π4),x∈R.(Ⅰ)求f(x)的最小正周期和单调增区间;(Ⅱ)若x=x0(0≤x0≤π...
已知函数f(x)=sin2x+23sinxcosx+sin(x+π4)sin(x-π4),x∈R.(Ⅰ)求f(x)的最小正周期和单调增区间;(Ⅱ)若x=x0(0≤x0≤π2)为f(x)的一个零点,求cos2x0的值.
展开
(Ⅰ)f(x)=sin
2x+
sin2x+
(sin
2x-cos
2x)=
+
sin2x-
cos2x,
=
sin2x-cos2x+
=2sin(2x-
)+
,
∴f(x)的周期为π,由-
+2kπ≤2x-
≤
+2kπ得:-
+kπ≤x≤
+kπ,k∈Z.
∴f(x)的单调递增区间为[-
+kπ,
+kπ]k∈Z.
(Ⅱ)由f(x
0)=2sin(2x
0-
)+
=0,得sin(2x
0-
)=-
<0,
又由0≤x
0≤
得-
≤2x
0-
≤
,
∴-
≤2x
0-
≤0,故cos(2x
0-
)=
,
此时cos2x
0=cos[(2x
0-
)+
]=cos(2x
0-
)cos
-sin(2x
0-
)sin
=
×
-(-
)×
=
收起
为你推荐: