已知函数f(x)=sin(2x+π6)+sin(2x-π6)+2cos2x.(Ⅰ)求f(x)的最小正周期和单调递增区间;(Ⅱ
已知函数f(x)=sin(2x+π6)+sin(2x-π6)+2cos2x.(Ⅰ)求f(x)的最小正周期和单调递增区间;(Ⅱ)已知a,b,c是△ABC三边长,且f(C)=...
已知函数f(x)=sin(2x+π6)+sin(2x-π6)+2cos2x.(Ⅰ)求f(x)的最小正周期和单调递增区间;(Ⅱ)已知a,b,c是△ABC三边长,且f(C)=2,△ABC的面积S=103,c=7.求角C及a,b的值.
展开
1个回答
展开全部
(Ⅰ)f(x)=sin2xcos
+cos2xsin
+sin2xcos
-cos2xsin
+cos2x+1=
sin2x+cos2x+1=2sin(2x+
)+1,
∵ω=2,∴T=
=π;
令-
+2kπ≤2x+
≤
+2kπ,k∈Z,得到-
+kπ≤x≤
+kπ,k∈Z,
则函数f(x)的递增区间是[-
+kπ,
+kπ],k∈Z;
(Ⅱ)由f(C)=2,得到2sin(2C+
)+1=2,即sin(2C+
)=
,
∴2C+
=
或2C+
=
,
解得:C=0(舍去)或C=
,
∵S=10
,
∴
absinC=
π |
6 |
π |
6 |
π |
6 |
π |
6 |
3 |
π |
6 |
∵ω=2,∴T=
2π |
2 |
令-
π |
2 |
π |
6 |
π |
2 |
π |
3 |
π |
6 |
则函数f(x)的递增区间是[-
π |
3 |
π |
6 |
(Ⅱ)由f(C)=2,得到2sin(2C+
π |
6 |
π |
6 |
1 |
2 |
∴2C+
π |
6 |
π |
6 |
π |
6 |
5π |
6 |
解得:C=0(舍去)或C=
π |
3 |
∵S=10
3 |
∴
1 |
2 |