如图,AB是⊙O的直径,点C在⊙O上,D是AB延长线上的一点,AE⊥DC交DC的延长线于E,AC平分∠DAE. (1)

如图,AB是⊙O的直径,点C在⊙O上,D是AB延长线上的一点,AE⊥DC交DC的延长线于E,AC平分∠DAE.(1)直线DE与⊙O有怎样的位置关系?为什么?(2)若AC=... 如图,AB是⊙O的直径,点C在⊙O上,D是AB延长线上的一点,AE⊥DC交DC的延长线于E,AC平分∠DAE. (1)直线DE与⊙O有怎样的位置关系?为什么?(2)若AC= ,⊙O的半径为1,求CD的长及由弧BC、线段BD、CD所围成的阴影部分的面积. 展开
 我来答
仰鸿达0Gq96a
推荐于2016-11-21 · 超过58用户采纳过TA的回答
知道答主
回答量:106
采纳率:0%
帮助的人:142万
展开全部
(1)直线DE与⊙O相切,理由见解析;(2) .


试题分析:(1)连接OC,证明∠OCD=90°,从而判断CD与⊙O相切.易证∠COD=60°,所以∠OCD=90°,从而得证;
(2)利用“切割法”解答,即S 阴影 =S△ OCD -S 扇形OCB
试题解析:(1)CD是⊙O的切线.理由如下:
∵DC=AC,∠CAB=30°,
∴∠CAD=∠CDA=30°(等边对等角).
连接OC.

∴∠COB=60°,即∠COD=60°(在同圆中,同弧所对的圆周角是所对的圆心角的一半).
在△COD中,∠CDO=30°,∠COD=60°,
∴∠DCO=90°.
又∵点C在⊙O上,
∴CD是⊙O的切线,即直线CD与⊙O相切;
(2)连接BC.
∵AB是⊙O的直径,
∴∠ACB=90°(直径所对的圆周角是直角).
∵∠CAB=30°,
∴∠COD=2∠CAB=60°,OC= AB=1,
∴在Rt△OCD中,CD=OC×tan60°=
∴S 阴影 =S△ OCD -S 扇形OCB = ×1× - =  .
考点: 1.切线的判定;2.扇形面积的计算.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式