三角形的一个外角等于与它不相邻的两个内角和是几年级开始学的
三角形的一个外角等于与它不相邻的两个内角和是八年级上册的内容。
三角形外角定理是平面几何的重要定理之一,指三角形的一个外角等于与它不相邻的两个内角的和。由此可得:三角形的外角大于任何一个与它不相邻的内角。
证明如下:
因为∠1+∠2+∠3=180°(三角形的三个内角和为180°)
且∠3+∠4=180°(邻补角互补)
所以∠4=∠1+∠2(等量代换)
扩展资料:
三角形的其他性质:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
8、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
*勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c² ,那么这个三角形是直角三角形。
9、直角三角形斜边的中线等于斜边的一半。
10、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
参考资料来源:百度百科-三角形外角定理
三角形的一个外角等于与它不相邻的两个内角和是八年级上册的内容。
三角形外角定理是平面几何的重要定理之一,指三角形的一个外角等于与它不相邻的两个内角的和。由此可得:三角形的外角大于任何一个与它不相邻的内角。
证明如下:
因为∠1+∠2+∠3=180°(三角形的三个内角和为180°)
且∠3+∠4=180°(邻补角互补)
所以∠4=∠1+∠2(等量代换)
多边形外角
三角形一个内角的一边与另一边的反向延长线所夹的角。亦即“三角形内角的邻补角”。三角形的每个顶点处都有两个相等的外角,所以每个三角形都有六个外角。
(1)多边形外角的定义:多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。在每一个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。
(2)多边形外角和定理:多边形的外角和都等于360°。