已知sinx+cosx=1/5,x属于,求tanx的值
2个回答
2016-07-27
展开全部
sinx+cosx=1/5
(sinx)^2+(cosx)^2=1
(sinx+cosx)^2
=(sinx)^2+(cosx)^2+2sinxcosx
=1/25
2sinxcosx=-24/25
sinxcosx=-12/25
联立方程:
sinx+cosx=1/5
sinxcosx=-12/25
构造方程,sinx与cosx是这方程的
x^2-1/5*x-12/25=0
x1=4/5
x2=-3/5
x属于(0,π)
sinx=4/5
cosx=-3/5
tanx=sinx/cosx=-4/3
(sinx)^2+(cosx)^2=1
(sinx+cosx)^2
=(sinx)^2+(cosx)^2+2sinxcosx
=1/25
2sinxcosx=-24/25
sinxcosx=-12/25
联立方程:
sinx+cosx=1/5
sinxcosx=-12/25
构造方程,sinx与cosx是这方程的
x^2-1/5*x-12/25=0
x1=4/5
x2=-3/5
x属于(0,π)
sinx=4/5
cosx=-3/5
tanx=sinx/cosx=-4/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询