十六进制的转换
二进制转换十进制
二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……
所以,设有一个二进制数:101100100,转换为10进制为:356
用横式计算
0×20+0×21+1×22+0×23+0×24+1×25+1×26+0×27+1×28=356
0乘以多少都是0,所以我们也可以直接跳过值为0的位:
1×22+1×25+1×26+1×28=356
4+32+64+256 =356
八进制转换十进制
八进制就是逢8进1。
八进制数采用 0~7这八数来表达一个数。
八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……
所以,设有一个八进制数:1507,转换为十进制为:839,具体方法如下:
可以用横式直接计算:
7×80+0×81+5×82+1×83=839
也可以用竖式表示
第0位 7×80=7
第1位 0×81=0
第2位 5×82=320
第3位 1×83=512
十六进制转换十进制
16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这六个字母来分别表示10,11,12,13,14,15。字母不区分大小写。
十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……
所以,在第N(N从0开始)位上,如果是数β (β大于等于0,并且β小于等于 15,即:F)表示的大小为 β×16的N次方。
假设有一个十六进数 2AF5
直接计算就是:
5×160+F×161+A×162+2×163=10997
也可以用竖式表示:
第0位: 5×160=5
第1位: F×16^1=240
第2位: A×162=2560
第3位: 2×163=8192
-------------------------------
10997
此处可以看出,所有进制换算成10进制,关键在于各自的权值不同。
假设有人问你,十进数1234 为什么是一千二百三十四?你尽可以给他这么一个算式:
1234 = 1×103+2×102+3×101+4×100
十六进制互相转换
首先我们来看一个二进制数:1111,它是多少呢?
你可能还要这样计算:1×20+1×21+1×22+1×23=1×1+1×2+1×4+1×8=15。
然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,最高位的权值为23=8,然后依次是 22=4,21=2,20=1。
记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。
下面列出四位二进制数 xxxx 所有可能的值(中间略过部分)
仅4位的2进制数 快速计算方法 十进制值 十六进制
1111 = 8 + 4 + 2 + 1 = 15 =F
1110 = 8 + 4 + 2 + 0 = 14= E
1101 = 8 + 4 + 0 + 1 = 13= D
1100 = 8 + 4 + 0 + 0 = 12 =C
1011 = 8 + 0 + 2 + 1 = 11= B
1010 = 8 + 0 + 2 + 0 = 10 =A
1001 = 8 + 0 + 0 + 1 =9 =9
……
0001 = 0 + 0 + 0 + 1 = 1= 1
0000 = 0 + 0 + 0 + 0 = 0= 0
二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。
如(上行为二制数,下面为对应的十六进制):
1111 1101 , 1010 0101 , 1001 1011
F D , A 5 , 9 B
反过来,当我们看到 FD时,如何迅速将它转换为二进制数呢?
先转换F:
看到F,我们需知道它是15(可能你还不熟悉A~F这五个数),然后15如何用8421凑呢?应该是8 + 4 + 2 + 1,所以四位全为1 :1111。
接着转换D
看到D,知道它是13,13如何用8421凑呢?应该是:8 + 4 + 1,即:1101。
所以,FD转换为二进制数,为:1111 1101
由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。
比如,十进制数 1234转换成二制数,如果要一直除以2,直接得到2进制数,需要计算较多次数。所以我们可以先除以16,得到16进制数:
被除数 计算过程 商 余数
1234 1234/16 77 2
77 77/16 4 13 (D)
4 4/16 0 4
结果16进制为:4D2
然后我们可直接写出4D2的二进制形式: 0100 1101 0010 其中对映关系为:
0100 -- 4
1101 -- D
0010 -- 2
同样,如果一个二进制数很长,我们需要将它转换成10进制数时,除了前面学过的方法是,我们还可以先将这个二进制转换成16进制,然后再转换为10进制。
下面举例一个int类型的二进制数: 01101101 11100101 10101111 00011011 我们按四位一组转换为16进制:6D E5 AF 1B
十进制转十六进制
采余数定理分解,例如将487710转成十六进制:
487710÷16=30481....14(E)
30481÷16=1905....1
1905÷16=119....1
119÷16=7....7
7÷16=0....7
这样就计到487710(10)=7711E(16)