4个回答
展开全部
求原函数即是求此函数的不定积分:∫1/(1+cosx)^2dx.
解答如下:
由半角公式可得:cos(x)=[1-tan(x/2)^2]/[1+tan(x/2)^2].
设u=tan(x/2)(-π<x<π),则x=2arctan(u)
所以dx=(2/1+u^2)du
所以
∫1/(1+cosx)^2dx=∫1/[1+(1-u^2)/(1+u^2)]^2*(2/1+u^2)du
=∫1/[2/(1+u^2)]^2*(2/1+u^2)du
=(1/2)∫(1+u^2)du
=(1/2)(1/2u+1/3u^3)+c
=1/4u+1/6u^3+c
=1/4tan(x/2)+1/6(tan(x/2))^3+c
解答如下:
由半角公式可得:cos(x)=[1-tan(x/2)^2]/[1+tan(x/2)^2].
设u=tan(x/2)(-π<x<π),则x=2arctan(u)
所以dx=(2/1+u^2)du
所以
∫1/(1+cosx)^2dx=∫1/[1+(1-u^2)/(1+u^2)]^2*(2/1+u^2)du
=∫1/[2/(1+u^2)]^2*(2/1+u^2)du
=(1/2)∫(1+u^2)du
=(1/2)(1/2u+1/3u^3)+c
=1/4u+1/6u^3+c
=1/4tan(x/2)+1/6(tan(x/2))^3+c
展开全部
∫1/(1+cosx)^2dx
=∫1/[2(cos(x/2))^2]^2dx
=∫1/[4(cos(x/2))^4]dx
=∫(sec(x/2))^4/4dx
=1/4*∫[1+(tan(x/2))^2](sec(x/2))^2dx
=1/4*∫[1+(tan(x/2))^2]d[2(tan(x/2))^2]
=1/2*(tan(x/2))+1/2*1/3*(tan(x/2)^3)+c
=(tan(x/2)^3)/6+(tan(x/2))/2+c
=∫1/[2(cos(x/2))^2]^2dx
=∫1/[4(cos(x/2))^4]dx
=∫(sec(x/2))^4/4dx
=1/4*∫[1+(tan(x/2))^2](sec(x/2))^2dx
=1/4*∫[1+(tan(x/2))^2]d[2(tan(x/2))^2]
=1/2*(tan(x/2))+1/2*1/3*(tan(x/2)^3)+c
=(tan(x/2)^3)/6+(tan(x/2))/2+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=arccos[(1/根号x)-1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用积分慢慢求就行,我求了求太麻烦,没有化到底!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询