展开全部
(a) dy/dx = 2xy, dy/y = 2xdx, lny = x^2 + lnC, y = Ce^(x^2)
(b) 一阶线性微分方程,
y = e^(∫xdx) [ ∫2xe^(-∫xdx)dx + C]
= e^(x^2/2)[∫2xe^(-x^2/2)dx + C]
= e^(x^2/2)[-2∫e^(-x^2/2)d(-x^2/2) + C]
= e^(x^2/2)[-2e^(-x^2/2) + C]
= -2 + Ce^(x^2/2)
(b) 一阶线性微分方程,
y = e^(∫xdx) [ ∫2xe^(-∫xdx)dx + C]
= e^(x^2/2)[∫2xe^(-x^2/2)dx + C]
= e^(x^2/2)[-2∫e^(-x^2/2)d(-x^2/2) + C]
= e^(x^2/2)[-2e^(-x^2/2) + C]
= -2 + Ce^(x^2/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(a)
dy/dx-2xy =0
dy/dx = 2xy
∫dy/y = ∫2x dx
ln|y| = x^2 +C'
y = C.e^(x^2)
(b)
dy/dx -xy =2x
dy/dx = x(y+2)
∫dy/(y+2)= ∫xdx
ln|y+2| = (1/2)x^2 + C'
y+2 = Ce^[(1/2)x^2]
y=-2 +Ce^[(1/2)x^2]
dy/dx-2xy =0
dy/dx = 2xy
∫dy/y = ∫2x dx
ln|y| = x^2 +C'
y = C.e^(x^2)
(b)
dy/dx -xy =2x
dy/dx = x(y+2)
∫dy/(y+2)= ∫xdx
ln|y+2| = (1/2)x^2 + C'
y+2 = Ce^[(1/2)x^2]
y=-2 +Ce^[(1/2)x^2]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询