3个回答
展开全部
(3) 令 √(5-4x) = u, 则 x = (5-u^2)/4, dx = -udu/2
I = ∫<下3,上1>(5-u^2)(-du/)/8 = (1/8) ∫<下1,上3>(5-u^2)-du
= (1/8)[5u-u^3/3]<下1,上3> = 1/6
(6) 令 x = secu, 则 dx = secutanudu
I = ∫<下2π/3,上π>secutanudu/[secu(-tanu)]
= - ∫<下2π/3,上π>du = -π/3
(7) I = ∫<下0,上2>(x-1+1)dx/(x^2-2x+2)
= (1/2)∫<下0,上2>d(x^2-2x+2)/(x^2-2x+2)
+ ∫<下0,上2>d(x-1)/[1+(x-1)^2]
= (1/2)[ln(x^2-2x+2)]<下0,上2> + [arctan(x-1)]<下0,上2>
= 0 + π/4 - (-π/4) = π/2
I = ∫<下3,上1>(5-u^2)(-du/)/8 = (1/8) ∫<下1,上3>(5-u^2)-du
= (1/8)[5u-u^3/3]<下1,上3> = 1/6
(6) 令 x = secu, 则 dx = secutanudu
I = ∫<下2π/3,上π>secutanudu/[secu(-tanu)]
= - ∫<下2π/3,上π>du = -π/3
(7) I = ∫<下0,上2>(x-1+1)dx/(x^2-2x+2)
= (1/2)∫<下0,上2>d(x^2-2x+2)/(x^2-2x+2)
+ ∫<下0,上2>d(x-1)/[1+(x-1)^2]
= (1/2)[ln(x^2-2x+2)]<下0,上2> + [arctan(x-1)]<下0,上2>
= 0 + π/4 - (-π/4) = π/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
掌握定积分的基本公式就ok了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我会做
追答
我加你QQ给你发答案
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询