数学几何题求解
1个回答
展开全部
∵四边形ABCD是平行四边形(已知)
∴AD∥BC,AB∥CD(平行四边形性质)
∴∠EAD=∠AEB(两直线平行,内错角相等)
∠ADC=∠ECF(两直线平行,同位角相等)
∵∠EAD=∠EAB(已知)
∠EAD=∠AEB(已证)
∴∠EAB=∠档辩败AEB(等量代换)
∴△AEB是等腰三角形(等腰三角形定义)
∴AD=BE(等腰三角形性质)
∵AD=7(已知)
AB=4(已行颤知)
AB=BE(已证)
AD=BC(平行四边形性质)
∴BE=4(等量代换)
∴EC=BC-BE
=7-4
=3
∵∠D=∠B(平行四边形性质)
∠D=∠ECF(已证)灶森
∴∠B=∠ECF
∵BC.AF交于点E(已知)
∴∠BEA=∠CEF(对顶角相等)
∵∠EFC=180°-∠CEF-∠ECF
∠BAE=180°-∠BEA-∠B
∠BEA=∠CEF,∠B=∠ECF(已证)
∴∠EFC=∠BAE(等角的补角相等)
∵∠BAE=∠BEA=∠FEC(已证)
∠EFC=∠BAE(已证)
∴∠EFC=∠FEC(等量代换)
∴△EFC是等腰三角形(等腰三角形定义)
∴EC=FC(等腰三角形性质)
∵EC=3(已证)
∴FC=3(等量代换)
∴AD∥BC,AB∥CD(平行四边形性质)
∴∠EAD=∠AEB(两直线平行,内错角相等)
∠ADC=∠ECF(两直线平行,同位角相等)
∵∠EAD=∠EAB(已知)
∠EAD=∠AEB(已证)
∴∠EAB=∠档辩败AEB(等量代换)
∴△AEB是等腰三角形(等腰三角形定义)
∴AD=BE(等腰三角形性质)
∵AD=7(已知)
AB=4(已行颤知)
AB=BE(已证)
AD=BC(平行四边形性质)
∴BE=4(等量代换)
∴EC=BC-BE
=7-4
=3
∵∠D=∠B(平行四边形性质)
∠D=∠ECF(已证)灶森
∴∠B=∠ECF
∵BC.AF交于点E(已知)
∴∠BEA=∠CEF(对顶角相等)
∵∠EFC=180°-∠CEF-∠ECF
∠BAE=180°-∠BEA-∠B
∠BEA=∠CEF,∠B=∠ECF(已证)
∴∠EFC=∠BAE(等角的补角相等)
∵∠BAE=∠BEA=∠FEC(已证)
∠EFC=∠BAE(已证)
∴∠EFC=∠FEC(等量代换)
∴△EFC是等腰三角形(等腰三角形定义)
∴EC=FC(等腰三角形性质)
∵EC=3(已证)
∴FC=3(等量代换)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询