求证:√a²+b²+√b²+c²+√c²+a²≥√2(a+b+c)(a,b,c,∈R)
展开全部
当a+b+c当a+b+c>0时,由于两边都为正数
要证√a²+b²+√b²+c²+√c²+a²≥√2(a+b+c)
即证(√a²+b²+√b²+c²+√c²+a²)^2≥2(a+b+c)^2
即2√a²+b²*√b²+c²+2√a²+b²*√c²+a²+2√c²+b²*√c²+a²≥2ab+2ac+2bc
明显√a²+b²>=a,√c²+b²>=b,√a²+c²>=c
所以2√a²+b²*√b²+c²+2√a²+b²*√c²+a²+2√c²+b²*√c²+a²≥2ab+2ac+2bc成立
原题得证。
要证√a²+b²+√b²+c²+√c²+a²≥√2(a+b+c)
即证(√a²+b²+√b²+c²+√c²+a²)^2≥2(a+b+c)^2
即2√a²+b²*√b²+c²+2√a²+b²*√c²+a²+2√c²+b²*√c²+a²≥2ab+2ac+2bc
明显√a²+b²>=a,√c²+b²>=b,√a²+c²>=c
所以2√a²+b²*√b²+c²+2√a²+b²*√c²+a²+2√c²+b²*√c²+a²≥2ab+2ac+2bc成立
原题得证。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询