高中数学分为几大模块?
《高中数学》由人民教育出版社出版的图书,该书由人民教育出版社、课程教材研究所、数学课程教材研究开发中心共同编制,内容包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。
我国从20世纪50年代以来,中学数学教学大纲虽经历多次修订,但都有一个共同的指导思想,这就是搞好三基。并强调指出,正确理解数学概念是掌握数学基础知识的前提。而当前我国数学教学中的突出问题,恰好是把掌握数学基础,即数学概念的正确理解,给忽视了。
一方面是教材低估了学生的理解能力,为了“减负”,淡化甚至回避一些较难理解的基本概念;另一方面,“题海战术”式的应试策略,使教师没有充分的时间和精力去钻研如何使学生深入理解基本的数学概念。说是为了减负,其实南辕北辙,老师、学生的压力都增加了。
没有“过程”的教学,因为缺乏数学思想方法为纽带,概念间的关系无法认识,概念间的联系难以建立,导致学生的数学认知结构缺乏整体性。
扩展资料:
数学中有许多概念都有着密切的联系,如平行线段与平行向量、平面角与空间角、方程与不等式、映射与函数、对立事件与互斥事件等等,在教学中应善于寻找、分析其联系与区别,有利于学生掌握概念的本质。
再如,函数概念有两种定义,一种是初中给出的定义,是从运动变化的观点出发,其中的对应关系是将自变量的每一个取值,与唯一确定的函数值对应起来:另一种是高中给出的定义,是从集合、对应的观点出发,其中的对应关系是将原象集合中的每一个元素与象集合中唯一确定的元素对应起来。
参考资料来源:百度百科—高中数学
1、三角变换与三角函数的性质问题;
2、解三角形问题;
3、数列的通项、求和问题;
4、利用空间向量求角问题;
5、圆锥曲线中的范围问题;
6、解析几何中的探索性问题;
7、离散型随机变量的均值与方法;
8、函数的单调性、极值、最值问题。
扩展资料:
我国从20世纪50年代以来,中学数学教学大纲虽经历多次修订,但都有一个共同的指导思想,这就是搞好三基。并强调指出,正确理解数学概念是掌握数学基础知识的前提。而当前我国数学教学中的突出问题,恰好是把掌握数学基础,即数学概念的正确理解给忽视了。
一方面是教材低估了学生的理解能力,为了“减负”,淡化甚至回避一些较难理解的基本概念;另一方面,“题海战术”式的应试策略,使教师没有充分的时间和精力去钻研如何使学生深入理解基本的数学概念。
参考资料来源:百度百科-高中数学
2.不等式
3.函数
4.三角函数
5.向量(平面,空间)
6.解析几何(直线,圆,圆锥曲线)
7.立体几何
9.排列,组合,二项式
10.概率与统计
11.复数
12.微积分初步
13.算法初步