数学归纳法证明: 1+1/2∧½+1/3∧½+…+1/n∧½ > 2(n∧½ -1 )
1个回答
展开全部
既然是数学归纳法..应该很简单了..
当n=1时,3n/(2n+1)=1,满足;
若n=k时成立(k≥1),则1+1/2^2+1/3^2+…+1/k^2≥3k/(2k+1);
则1+1/2^2+…+1/k^2+1/(k+1)^2≥3k/(2k+1)+1/(k+1)^2;
3k/(2k+1)+1/(k+1)^2-(3k+3)/(2k+3)=(k^2+2k)/((k+1)^2*(2k+1)*(2k+3))>0,
故1+1/2^2+…+1/k^2+1/(k+1)^2>(3k+3)/(2k+3),
即n=k+1时也成立.
over.
当n=1时,3n/(2n+1)=1,满足;
若n=k时成立(k≥1),则1+1/2^2+1/3^2+…+1/k^2≥3k/(2k+1);
则1+1/2^2+…+1/k^2+1/(k+1)^2≥3k/(2k+1)+1/(k+1)^2;
3k/(2k+1)+1/(k+1)^2-(3k+3)/(2k+3)=(k^2+2k)/((k+1)^2*(2k+1)*(2k+3))>0,
故1+1/2^2+…+1/k^2+1/(k+1)^2>(3k+3)/(2k+3),
即n=k+1时也成立.
over.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询