1/(x^4-1)的不定积分
展开全部
解答过程如下:
∫1/(x^4-1)dx
=∫1/[(x?-1)(x?+1)]dx
=(1/2)∫[1/(x?-1)]-[1/(x?+1)]dx
=(1/2)∫[1/(x?-1)]dx-(1/2)∫[1/(x?+1)]dx
=(1/4)∫[1/(x-1)]-[1/(x+1)]dx-(1/2)arctanx
=(1/4)∫[1/(x-1)]dx-(1/4)∫[1/(x+1)]dx-(1/2)arctanx
=(1/4)ln|x-1|-(1/4)ln|x+1|-(1/2)arctanx
=(1/4)ln(|x-1|/|x+1|)-(1/2)arctanx
扩展资料
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询