1/(1+x^4)的不定积分怎么算啊?

xyz0703
高粉答主

推荐于2019-10-24 · 每个回答都超有意思的
知道小有建树答主
回答量:1280
采纳率:100%
帮助的人:53万
展开全部

∫ dx/[x(1+x⁴)]

令u=x⁴,du=4x³ dx

原式= ∫ 1/[x*(1+u)] * du/(4x³)

= (1/4)∫ 1/[u(u+1)] du

= (1/4)∫ (u+1-u)/[u(u+1)] du

= (1/4)∫ [1/u - 1/(u+1)] du

= (1/4)(ln|u| - ln|u+1|) + C

= (1/4)ln|x^4| - (1/4)ln|x^4+1| + C

= ln|x| - (1/4)ln(x^4+1) + C

扩展资料

不定积分的解法:

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

1、凑微分法

通过凑微分,最后依托于某个积分公式。进而求得原不定积分。

2、分部积分法

将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。

3、积分公式法

直接利用积分公式求出不定积分。

丘冷萱Ad
推荐于2017-12-16 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3884万
展开全部
本题技巧很高
∫ 1/(1+x^4) dx
=(1/2)∫ [(1-x²)+(1+x²)]/(1+x^4) dx
=(1/2)∫ (1-x²)/(1+x^4) dx + (1/2)∫ (1+x²)/(1+x^4) dx
分子分母同除以x²
=(1/2)∫ (1/x²-1)/(x²+1/x²) dx + (1/2)∫ (1/x²+1)/(x²+1/x²) dx
=-(1/2)∫ 1/(x²+1/x²+2-2) d(x+1/x) + (1/2)∫ 1/(x²+1/x²-2+2) d(x-1/x)
=-(1/2)∫ 1/[(x+1/x)²-2] d(x+1/x) + (1/2)∫ 1/[(x-1/x)²+2] d(x-1/x)
=-(√2/8)ln|(x+1/x-√2)/(x+1/x+√2)| + (√2/4)arctan[(x-1/x)/√2] + C

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sgz0651
2012-09-14 · TA获得超过319个赞
知道小有建树答主
回答量:398
采纳率:100%
帮助的人:238万
展开全部
1/1+x^4=1-x^4/1+x^4,x^2=u;
或者利用倒数代换吧t=1/x。
追问
谢谢啊!!可是怎么算不出来呢?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式