矩阵初等变换后与原矩阵相等吗
展开全部
不相等,矩阵经初等变换后与原矩阵不相等,不是同一个矩阵。初等变换除了不改变矩阵的秩,其他所有矩阵的特性都改了。不过得到的矩阵跟原来矩阵等价,但是并不是相同。
两个矩阵相等是指:
1、两个对应矩阵要求同型 (行数与列数相同)
2、两个对应矩阵的对应位置的元素相等
3、两个矩阵的对应分量相同
矩阵经过初等变换以后主要特征:
矩阵的秩是反映矩阵固有特性的一个重要概念,任何矩阵经过矩阵初等变换后其秩不变。
(1)对矩阵A施行行交换变换,设交换矩阵A中某两行得矩阵B,显然B中的任一子式经过行重新排列必是矩阵A的一个子式,两者之间只可能有符号差别,而是否为零的性质不变,因此进行交换变换后,秩不变。
(2)对矩阵A施行行的倍法变换,用k¹0乘矩阵A的第I行得矩阵C,C矩阵的子式或是A的子式;或是A的相应子式的k倍,因而任一子式是否为零的性质不变,所以秩不变。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询