求微分方程y''=2yy'满足条件y(0)=1,y'(0)=1的解

 我来答
大沈他次苹0B
2022-06-21 · TA获得超过7279个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:171万
展开全部
y''=2yy'=(y^2)'
所以积分得到
y'=y^2+c1
就是
y'/(y^2+c1)=1
也就是
(√c1y')/(1+(y/√c1)^2)=√c1
就是
[arctan(y/√c1)]'=√c1
积分
arctan(y/√c1)=√c1*x+c2
y/√c1=tan(√c1*x+c2)
y=√c1tan(√c1*x+c2)
y(0)=1,y'(0)=1代入
c1,c2无解,是否条件有错误
其他两人的回答,验证一下就发现有错误的.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式