数学建模 复合肥生产

我们老师给的期末考试作业,交一篇数学建模论文,网上找了发现是中北大学今天的数学建模题目,还有几天就要交了可是我做不来,还忘哪位大哥大姐给我点资料些什么的。题目如下,高分追... 我们老师给的期末考试作业,交一篇数学建模论文,网上找了发现是中北大学今天的数学建模题目,还有几天就要交了可是我做不来,还忘哪位大哥大姐给我点资料些什么的。题目如下,高分追加啊。

复合肥料生产
某复合肥料由几种基本肥料组合而成,基础肥料有5种,其中氮肥3种:N1,N2,N3,磷肥2种P1,P2,各种基础肥料由其它化工厂购进,未来半年中各种基础肥料的价格如下:
月份\肥料 P1 P2 N1 N2 N3
一 1650 1800 1950 1650 1725
二 1950 1950 1650 1350 1725
三 1650 2100 1950 1500 1425
四 1800 1650 1800 1800 1875
五 1500 1800 2250 1650 1575
六 1350 1500 2100 1200 2025
对几种基础肥料加工,然后混合为复合肥。复合肥售价为2250元/吨。氮肥和磷肥在不同生产线加工,每个月最多可以加工磷肥200吨,氮肥250吨。加工过程没有重量损失,费用不考虑。每种基础肥料最多可以存储1000吨备用,存储费用为每吨每月75元。成品复合肥和加工过的基础肥料不能存储。对复合肥的杂质指标限制在3-6%个单位之间,假设杂质是线性混合的。各种基础肥料的杂质含量见下表
基础肥料 P1 P2 N1 N2 N3
杂质(%) 8.8 6.1 2.0 4.2 5.0

为使公司获得最大利润,应采取什么样的采购和加工方案。现存有5种基础肥料每种500吨,要求在6月底仍然有这样多存货。
研究总利润和采购与加工方案适应不同的未来市场价格应如何变化。考虑如下的价格变化方式:2月份基础磷肥价格上升x%,基础氮肥价格上升2x%;3月份基础磷肥上升2x%,基础氮肥上升4x%;其余月份保持这种线性的上升势头。对不同的值x(直到20),就方案的必要的变化及对利润的影响,作出全面计划。
展开
 我来答
云端的店店
推荐于2016-03-10
知道答主
回答量:20
采纳率:0%
帮助的人:11.6万
展开全部
  model:
  sets:
  shijian/1..6/;
  feiliao/1..5/:t;
  link(shijian,feiliao):y,x,m;
  endsets
  data:
  m=1650 1800 1950 1650 1725
  1950 1950 1650 1350 1725
  1650 2100 1950 1500 1425
  1800 1650 1800 1800 1875
  1500 1800 2250 1650 1575
  1350 1500 2100 1200 2025;
  t=0.088 0.061 0.020 0.042 0.050;
  enddata
  !目标函数;
  max=@sum(link:2250*y-m*x)-75*(30*500+
  @sum(feiliao(j):x(1,j)-y(1,j))+
  @sum(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#2:x(i,j)-y(i,j)))+
  @sum(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#3:x(i,j)-y(i,j)))+
  @sum(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#4:x(i,j)-y(i,j)))+
  @sum(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#5:x(i,j)-y(i,j))));
  !加工能力约束;
  @for(shijian(i):
  @sum(feiliao(j)|j#ge#1#and#j#le#2:y(i,j))<=200);
  @for(shijian(i):
  @sum(feiliao(j)|j#ge#3#and#j#le#5:y(i,j))<=250);
  !储存量约束;
  @for(feiliao(j):x(1,j)-y(1,j)<=500);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#2:x(i,j)-y(i,j))<=500);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#3:x(i,j)-y(i,j))<=500);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#4:x(i,j)-y(i,j))<=500);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#5:x(i,j)-y(i,j))<=500);

  @for(feiliao(j):x(1,j)-y(1,j)+500>=0);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#2:x(i,j)-y(i,j))>=-500);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#3:x(i,j)-y(i,j))>=-500);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#4:x(i,j)-y(i,j))>=-500);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#5:x(i,j)-y(i,j))>=-500);

  !杂质含量约束;
  @sum(feiliao(j):y(1,j)*t(j))>0.03*@sum(feiliao(j):y(1,j));
  @sum(feiliao(j):y(2,j)*t(j))>0.03*@sum(feiliao(j):y(2,j));
  @sum(feiliao(j):y(3,j)*t(j))>0.03*@sum(feiliao(j):y(3,j));
  @sum(feiliao(j):y(4,j)*t(j))>0.03*@sum(feiliao(j):y(4,j));
  @sum(feiliao(j):y(5,j)*t(j))>0.03*@sum(feiliao(j):y(5,j));
  @sum(feiliao(j):y(6,j)*t(j))>0.03*@sum(feiliao(j):y(6,j));
  @sum(feiliao(j):y(1,j)*t(j))<0.06*@sum(feiliao(j):y(1,j));
  @sum(feiliao(j):y(2,j)*t(j))<0.06*@sum(feiliao(j):y(2,j));
  @sum(feiliao(j):y(3,j)*t(j))<0.06*@sum(feiliao(j):y(3,j));
  @sum(feiliao(j):y(4,j)*t(j))<0.06*@sum(feiliao(j):y(4,j));
  @sum(feiliao(j):y(5,j)*t(j))<0.06*@sum(feiliao(j):y(5,j));
  @sum(feiliao(j):y(6,j)*t(j))<0.06*@sum(feiliao(j):y(6,j));

  !月末余量约束;
  @sum(shijian(i):x(i,1)-y(i,1))=0;
  @sum(shijian(i):x(i,2)-y(i,2))=0;
  @sum(shijian(i):x(i,3)-y(i,3))=0;
  @sum(shijian(i):x(i,4)-y(i,4))=0;
  @sum(shijian(i):x(i,5)-y(i,5))=0;
  !复合肥基本条件;
  @for(shijian(i):
  @sum(feiliao(j)|j#ge#1#and#j#le#2:y(i,j))>0.0005);
  @for(shijian(i):
  @sum(feiliao(j)|j#ge#3#and#j#le#5:y(i,j))>0.0005);

  end
  第二问:
  model:
  sets:
  shijian/1..6/;
  feiliao/1..5/:t,m1;
  link(shijian,feiliao):y,x;
  endsets
  data:
  m1=1650 1800 1950 1650 1725;
  t=0.088,0.061,0.020,0.042,0.050;
  r=?;
  enddata
  !目标函数;
  max=@sum(link:2250*y)-@sum(feiliao(j):m1(j)*x(1,j))-
  (1950*(1+r/100)*x(2,1)+1950*(1+r/100)*x(2,2)+1650*(1+2*r/100)*x(2,3)+1350*(1+2*r/100)*x(2,4)+1725*(1+2*r/100)*x(2,5)+
  1650*(1+2*r/100)*x(3,1)+2100*(1+2*r/100)*x(3,2)+1950*(1+4*r/100)*x(3,3)+1500*(1+4*r/100)*x(3,4)+1425*(1+4*r/100)*x(3,5)+
  1800*(1+4*r/100)*x(4,1)+1650*(1+4*r/100)*x(4,2)+1800*(1+8*r/100)*x(4,3)+1800*(1+8*r/100)*x(4,4)+1875*(1+8*r/100)*x(4,5)+
  1500*(1+8*r/100)*x(5,1)+1800*(1+8*r/100)*x(5,2)+2250*(1+16*r/100)*x(5,3)+1650*(1+16*r/100)*x(5,4)+1575*(1+16*r/100)*x(5,5)+
  1350*(1+16*r/100)*x(6,1)+1500*(1+16*r/100)*x(6,2)+2100*(1+32*r/100)*x(6,3)+1200*(1+32*r/100)*x(6,4)+2025*(1+32*r/100)*x(6,5)
  )-75*(30*500+
  @sum(feiliao(j):x(1,j)-y(1,j))+
  @sum(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#2:x(i,j)-y(i,j)))+
  @sum(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#3:x(i,j)-y(i,j)))+
  @sum(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#4:x(i,j)-y(i,j)))+
  @sum(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#5:x(i,j)-y(i,j))));
  !加工能力约束;
  @for(shijian(i):
  @sum(feiliao(j)|j#ge#1#and#j#le#2:y(i,j))<=200);
  @for(shijian(i):
  @sum(feiliao(j)|j#ge#3#and#j#le#5:y(i,j))<=250);
  !储存量约束;
  @for(feiliao(j):x(1,j)-y(1,j)<=500);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#2:x(i,j)-y(i,j))<=500);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#3:x(i,j)-y(i,j))<=500);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#4:x(i,j)-y(i,j))<=500);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#5:x(i,j)-y(i,j))<=500);

  @for(feiliao(j):x(1,j)-y(1,j)+500>=0);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#2:x(i,j)-y(i,j))>=-500);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#3:x(i,j)-y(i,j))>=-500);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#4:x(i,j)-y(i,j))>=-500);
  @for(feiliao(j):@sum(shijian(i)|i#ge#1#and#i#le#5:x(i,j)-y(i,j))>=-500);

  !杂质含量约束;
  @sum(feiliao(j):y(1,j)*t(j))>0.03*@sum(feiliao(j):y(1,j));
  @sum(feiliao(j):y(2,j)*t(j))>0.03*@sum(feiliao(j):y(2,j));
  @sum(feiliao(j):y(3,j)*t(j))>0.03*@sum(feiliao(j):y(3,j));
  @sum(feiliao(j):y(4,j)*t(j))>0.03*@sum(feiliao(j):y(4,j));
  @sum(feiliao(j):y(5,j)*t(j))>0.03*@sum(feiliao(j):y(5,j));
  @sum(feiliao(j):y(6,j)*t(j))>0.03*@sum(feiliao(j):y(6,j));
  @sum(feiliao(j):y(1,j)*t(j))<0.06*@sum(feiliao(j):y(1,j));
  @sum(feiliao(j):y(2,j)*t(j))<0.06*@sum(feiliao(j):y(2,j));
  @sum(feiliao(j):y(3,j)*t(j))<0.06*@sum(feiliao(j):y(3,j));
  @sum(feiliao(j):y(4,j)*t(j))<0.06*@sum(feiliao(j):y(4,j));
  @sum(feiliao(j):y(5,j)*t(j))<0.06*@sum(feiliao(j):y(5,j));
  @sum(feiliao(j):y(6,j)*t(j))<0.06*@sum(feiliao(j):y(6,j));

  !月末余量约束;
  @sum(shijian(i):x(i,1)-y(i,1))=0;
  @sum(shijian(i):x(i,2)-y(i,2))=0;
  @sum(shijian(i):x(i,3)-y(i,3))=0;
  @sum(shijian(i):x(i,4)-y(i,4))=0;
  @sum(shijian(i):x(i,5)-y(i,5))=0;
  !复合肥基本条件;
  @for(shijian(i):
  @sum(feiliao(j)|j#ge#1#and#j#le#2:y(i,j))>0.0005);
  @for(shijian(i):
  @sum(feiliao(j)|j#ge#3#and#j#le#5:y(i,j))>0.0005);

  end
上海凯百斯
2024-09-23 广告
作为凯百斯纳米技术(上海)有限公司的工作人员,我深知脂质体挤出器在多个领域的重要性。该设备主要用于药剂产品粒径的均一化,能够去除产品中的颗粒和沉淀,减小脂质体及乳剂的粒径,便于无菌过滤。其工作原理是通过动力端产生一定的压力,挤压样品通过聚碳... 点击进入详情页
本回答由上海凯百斯提供
天不欺人
2010-09-14
知道答主
回答量:9
采纳率:0%
帮助的人:1.3万
展开全部
还是自己做吧!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式