e^xy-2x-y=0 在点(1/2,0)处的切线方程
1个回答
展开全部
e^(xy) - 2x - y = 0
e^(xy) * (y + xy') - 2 - y' = 0
y' * [xe^(xy) - 1] = 2 - ye^(xy)
y' = [2 - ye^(xy)]/[xe^(xy) - 1]
y'|(x = 1/2,y = 0) = (2 - 0)/(1/2 - 1) = - 4
于是切线方程:
y - 0 = - 4(x - 1/2)
y = - 4x + 2
e^(xy) * (y + xy') - 2 - y' = 0
y' * [xe^(xy) - 1] = 2 - ye^(xy)
y' = [2 - ye^(xy)]/[xe^(xy) - 1]
y'|(x = 1/2,y = 0) = (2 - 0)/(1/2 - 1) = - 4
于是切线方程:
y - 0 = - 4(x - 1/2)
y = - 4x + 2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询