如何求解特征值与特征向量?
1个回答
展开全部
求出特征值 λ1,λ2,...,λn 与对应的特征向量 ξ1,ξ2,...,ξn。当有n个特征向量时,取 P=[ξ1,ξ2,...,ξn], 求出 P^(-1)。则有 P^(-1)AP=diag(λ1,λ2,...,λn)。
线性代数是关于向量空间和线性映射的一个数学分支,包括对线、面和子空间的研究,也涉及到所有向量空间的一般性质。
线性代数是纯数学和应用数学的核心,它的含义随着数学的发展而不断扩大,其理论和方法已经渗透到数学的许多分支,也成为理论物理和理论化学不可缺少的代数基础知识。
线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。
含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询