求证:等腰三角形一腰上高与底边的夹角等于顶角的一半
1个回答
展开全部
分类: 教育/学业/考试 >> 学习帮助
问题描述:
求证:等腰三角形一腰上高与底边的夹角等于顶角的一半
解析:
设等腰三角形ABC,AB=AC,BC为底边,过B作BD⊥AC交AC于D点。求证:∠DBC=1/2∠BAC。(图自己画吧)
证明:过A作AE⊥BC。
∵△ABC是等腰三角形 ∴∠BAE=∠EAC=1/2∠BAC
又因为∠C+∠DBC=90°,∠C+∠EAC=90°
∴∠DBC=∠EAC=1/2∠BAC
累死我了
问题描述:
求证:等腰三角形一腰上高与底边的夹角等于顶角的一半
解析:
设等腰三角形ABC,AB=AC,BC为底边,过B作BD⊥AC交AC于D点。求证:∠DBC=1/2∠BAC。(图自己画吧)
证明:过A作AE⊥BC。
∵△ABC是等腰三角形 ∴∠BAE=∠EAC=1/2∠BAC
又因为∠C+∠DBC=90°,∠C+∠EAC=90°
∴∠DBC=∠EAC=1/2∠BAC
累死我了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询