不定积分∫1/ sin(x/2) dx的推导过程?

 我来答
笑九社会小达人
高能答主

2023-01-07 · 专注社会民生知识解答。
笑九社会小达人
采纳数:742 获赞数:53112

向TA提问 私信TA
展开全部

∫cscxdx

=∫1/sinxdx

=∫1/[2sin(x/2)cos(x/2)]dx,两倍角公式

=∫1/[sin(x/2)cos(x/2)]d(x/2)

=∫1/tan(x/2)*sec²(x/2)d(x/2)

=∫1/tan(x/2)d[tan(x/2)],注∫sec²(x/2)d(x/2)=tan(x/2)+C

=ln|tan(x/2)|+C。


不定积分

如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x)。即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。

设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式