已知正项数列[an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n^2(n>1,n∈N*)求数列{an?

 我来答
世纪网络17
2022-11-06 · TA获得超过5955个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:144万
展开全部
已知正项数列{an},满足a1=3,(2n-1)an+2=(2n+1)an-1+8n^2(n>1n属于正数)1、求an通项公式 2、设bn=1/an,求数列bn前n项和
1.(2n-1)an+2=(2n+1)an-1+8n^2
an=(2n+1)/(2n-1)*an-1+(8n^2-2)/(2n-1)
即an=(2n+1)/(2n-1)*an-1+4n+2
两边同时除以2n+1得
an/(2n+1)=an-1/(2n-1)+2
所以数列an/(2n+1)是等差数列
首项a1/(2+1)=1,公差为2
所以an/(2n+1)=2n-1
an通项公式是an=(2n+1)(2n-1)=4n^2-1
(2)bn=1/an=1/((2n+1)(2n-1))=1/2(1/(2n-1)-1/(2n+1))
b1=1/2(1-1/3)
b2=1/2(1/3-1/5)
……
bn=1/2(1/(2n-1)-1/(2n+1))
累加得数列bn前n项和=1/2(1-1/(2n+1))=n/(2n+1),3,已知正项数列[an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n^2(n>1,n∈N*)求数列{an}的通项an
设bn=1/an,求数列{bn}的前n项的和Sn
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式