多边形的内角和公式是什么
展开全部
设多边形的边数为N,
则其内角和=(N-2)*180°。
因为N个顶点的N个外角和N个内角的和=N*180°(每个顶点的一个外角和相邻的内角互补)。
所以N边形的外角和
=N*180°-(N-2)*180°
=N*180°-N*180°+360°
=360°。
即N边形的外角和等于360°。
设多边形的边数为N,
则其外角和=360°。
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补),
所以N边形的内角和
=N*180°-360°
=N*180°-2*180°
=(N-2)*180°
即N边形的内角和等于(N-2)*180°。
则其内角和=(N-2)*180°。
因为N个顶点的N个外角和N个内角的和=N*180°(每个顶点的一个外角和相邻的内角互补)。
所以N边形的外角和
=N*180°-(N-2)*180°
=N*180°-N*180°+360°
=360°。
即N边形的外角和等于360°。
设多边形的边数为N,
则其外角和=360°。
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补),
所以N边形的内角和
=N*180°-360°
=N*180°-2*180°
=(N-2)*180°
即N边形的内角和等于(N-2)*180°。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询