∫(1/(x²+1)×1/(1-x))dx等于?
2个回答
展开全部
1/(x²+1)(1-x)=(ax+b)/(x²+1)+c/(1-x)
则1=-ax²+ax-bx+b+cx²+c
所以c-a=0
a-b=0
b+c=1
所以a=b=c=1/2
所以原式=1/2∫[(x+1)/(x²+1)+1/(1-x)]dx
=1/2[∫xdx/(x²+1)+∫dx/(x²+1)-∫dx/(x-1)]
=1/2[∫1/2dx²/(x²+1)+∫dx/(x²+1)-∫dx/(x-1)]
=1/2*[1/2*ln(x²+1)+arctanx-ln|x-1|]+C
则1=-ax²+ax-bx+b+cx²+c
所以c-a=0
a-b=0
b+c=1
所以a=b=c=1/2
所以原式=1/2∫[(x+1)/(x²+1)+1/(1-x)]dx
=1/2[∫xdx/(x²+1)+∫dx/(x²+1)-∫dx/(x-1)]
=1/2[∫1/2dx²/(x²+1)+∫dx/(x²+1)-∫dx/(x-1)]
=1/2*[1/2*ln(x²+1)+arctanx-ln|x-1|]+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询