2017-08-15
展开全部
还有当x->0时,tanx/x=1,arctanx/x=1
lim(x->0)(1+x)^(1/x)=e
lim(x->∞)(1+1/x)^x=e
lim(x->0)[x*sin(1/x)]=0
或者lim(x->∞)[(1/x)*sinx]=0
等价无穷小代换,
当x→0时, sinx~x tanx~x arcsinx~x arctanx~x (1-cosx)~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna ((a^x-1)/x~lna) (e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0)
等价无穷小在应用的时候,必须是相乘或相除的关系才能代换
比如lim(x->0)tanx/x =lim(x->0)x/x=1
但是lim(x->0)(tanx-x)/e^x像这种情况,就不能将tanx~x得到极限为0的结论
万能公式都是可以用定理以及洛必达法则或等价无穷小代换来求得的,所以掌握方法最重要,因为公式容易记混的.
lim(x->0)(1+x)^(1/x)=e
lim(x->∞)(1+1/x)^x=e
lim(x->0)[x*sin(1/x)]=0
或者lim(x->∞)[(1/x)*sinx]=0
等价无穷小代换,
当x→0时, sinx~x tanx~x arcsinx~x arctanx~x (1-cosx)~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna ((a^x-1)/x~lna) (e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0)
等价无穷小在应用的时候,必须是相乘或相除的关系才能代换
比如lim(x->0)tanx/x =lim(x->0)x/x=1
但是lim(x->0)(tanx-x)/e^x像这种情况,就不能将tanx~x得到极限为0的结论
万能公式都是可以用定理以及洛必达法则或等价无穷小代换来求得的,所以掌握方法最重要,因为公式容易记混的.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询