已知三角形abc的三边a,b,c和面积满足S=a^2-(b-c)^2,且b+C=8 求 cos A
1个回答
展开全部
S=a^2-(b-c)^2
=a^2-(b^2+c^2)+2bc
=[b^2+c^2-2bc*cosA]-(b^2+c^2)+2bc
=2bc(1-cosA)=(1/2)bc*sinA
1-cosA=(1/4)sinA
(1-cosA)^2=(1/亩念世轮16)(sinA)^2=(1/16)(1-(cosA)^2)
17(cosA)^2-32cosA+15=0
(17cosA-15)(cosA-1)=0
cosA=15/17 (cosA=1,舍弃)迅返困
=a^2-(b^2+c^2)+2bc
=[b^2+c^2-2bc*cosA]-(b^2+c^2)+2bc
=2bc(1-cosA)=(1/2)bc*sinA
1-cosA=(1/4)sinA
(1-cosA)^2=(1/亩念世轮16)(sinA)^2=(1/16)(1-(cosA)^2)
17(cosA)^2-32cosA+15=0
(17cosA-15)(cosA-1)=0
cosA=15/17 (cosA=1,舍弃)迅返困
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询