设函数f(x)=2cos²x+2√3sinxcosx (1)求f(x)的最小正周期及单调增区间 (
设函数f(x)=2cos²x+2√3sinxcosx(1)求f(x)的最小正周期及单调增区间(2)当x∈[-5π/12,π/12]时,求f(x)的值域(3)若f...
设函数f(x)=2cos²x+2√3sinxcosx
(1)求f(x)的最小正周期及单调增区间
(2)当x∈[-5π/12,π/12]时,求f(x)的值域
(3)若f(x)=5/3,-π/6<x<π/6,求sin2x的值 展开
(1)求f(x)的最小正周期及单调增区间
(2)当x∈[-5π/12,π/12]时,求f(x)的值域
(3)若f(x)=5/3,-π/6<x<π/6,求sin2x的值 展开
展开全部
(1)
f(x)=2cos²x+2√3sinxcosx
=1+cos2x+√3sin2x
=2(√3/2sin2x+1/2cos2x)+1
=2sin(2x+π/6)+1
f(x)最小正周期T=2π/2=π
由2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈Z
得kπ-π/3≤x≤kπ+π/6,k∈Z
∴f(x)递增区间为[kπ-π/3,kπ+π/6],k∈Z
(2)
∵x∈[-5π/12,π/12]
∴2x∈[-5π/6,π/6]
2x+π/6∈[-2π/3,π/3]
∴-1≤sin(2x+π/6)≤√3/2
∴-2≤2sin(2x+π/6)≤√3
那么-1≤f(x)≤1+√3
即f(x)的值域为[-1,1+√3]
(3)
∵-π/6<x<π/6
∴-π/6<2x+π/6<π/2
∵f(x)=5/3
即sin(2x+π/6)=1/3
∴cos(2x+π/6)=√[1-sin^2(2x+π/6)]=2√2/3
∴sin2x=sin[(2x+π/6)-π/6]
=sin(2x+π/6)cosπ/6-cos(2x+π/6)sinπ/6
=1/3*√3/2-2√2/3*1/2
=(√3-2√2)/6
f(x)=2cos²x+2√3sinxcosx
=1+cos2x+√3sin2x
=2(√3/2sin2x+1/2cos2x)+1
=2sin(2x+π/6)+1
f(x)最小正周期T=2π/2=π
由2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈Z
得kπ-π/3≤x≤kπ+π/6,k∈Z
∴f(x)递增区间为[kπ-π/3,kπ+π/6],k∈Z
(2)
∵x∈[-5π/12,π/12]
∴2x∈[-5π/6,π/6]
2x+π/6∈[-2π/3,π/3]
∴-1≤sin(2x+π/6)≤√3/2
∴-2≤2sin(2x+π/6)≤√3
那么-1≤f(x)≤1+√3
即f(x)的值域为[-1,1+√3]
(3)
∵-π/6<x<π/6
∴-π/6<2x+π/6<π/2
∵f(x)=5/3
即sin(2x+π/6)=1/3
∴cos(2x+π/6)=√[1-sin^2(2x+π/6)]=2√2/3
∴sin2x=sin[(2x+π/6)-π/6]
=sin(2x+π/6)cosπ/6-cos(2x+π/6)sinπ/6
=1/3*√3/2-2√2/3*1/2
=(√3-2√2)/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询