1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,
1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,...
1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;
(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想; 展开
(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想; 展开
2014-04-19 · 知道合伙人软件行家
关注
展开全部
(1)证明:过E点作EN⊥CH于N.
∵EF⊥BD,CH⊥BD,
∴四边形EFHN是矩形.
∴EF=NH,FH∥EN.
∴∠DBC=∠NEC.
∵四边形ABCD是矩形,
∴AC=BD,且互相平分
∴∠DBC=∠ACB
∴∠NEC=∠ACB
∵EG⊥AC,EN⊥CH,
∴∠EGC=∠CNE=90°,
又∵EC=CE,
∴△EGC≌△CNE.
∴EG=CN
∴CH=CN+NH=EG+EF;
(2)解:猜想CH=EF-EG;
∵EF⊥BD,CH⊥BD,
∴四边形EFHN是矩形.
∴EF=NH,FH∥EN.
∴∠DBC=∠NEC.
∵四边形ABCD是矩形,
∴AC=BD,且互相平分
∴∠DBC=∠ACB
∴∠NEC=∠ACB
∵EG⊥AC,EN⊥CH,
∴∠EGC=∠CNE=90°,
又∵EC=CE,
∴△EGC≌△CNE.
∴EG=CN
∴CH=CN+NH=EG+EF;
(2)解:猜想CH=EF-EG;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询