随机变量x服从几何分布,其分布律为P(x=k)=p(1-p)^(k-1),k=1,2...,求E(x),D(x),求详解步骤

evolmath
2013-11-01 · TA获得超过2745个赞
知道小有建树答主
回答量:413
采纳率:100%
帮助的人:241万
展开全部
下面的计算利用幂级数展开式(通过1/(1-x)=∑{k,0,∞}x^k,x∈(-1,1)容易证明) :
1/(1-x)²=1+2x+3x²+4x³+…=∑{k,0,∞}(k+1)*x^k,x∈(-1,1) ①

注意到0<1-p<1
E(X)=∑{k,1,∞}k*p*(1-p)^(k-1)
=p*∑{k,0,∞}(k+1)*(1-p)^k
=p*1/[1-(1-p)]² 由①
=1/p

为计算D(X),可先求出幂级数∑{k,0,∞}(k+1)²*x^k,x∈(-1,1)的和函数
令S(x)=∑{k,0,∞}(k+1)²*x^k,x∈(-1,1),则
∫{0,x}S(x)dx=∫{0,x}[∑{k,0,∞}(k+1)²*x^k]dx
=∑{k,0,∞}∫{0,x} [(k+1)²*x^k]dx
=∑{k,0,∞}(k+1)*x^(k+1)
=x*∑{k,0,∞}(k+1)*x^k
=x*1/(1-x)² 由①
S(x)=[ x/(1-x)²]'=(1+x)/(1-x)³,即
∑{k,0,∞}(k+1)²*x^k=(1+x)/(1-x)³,x∈(-1,1) ②

∵E(X²)=∑{k,1,∞}k²*p*(1-p)^(k-1)
=p*∑{k,0,∞}(k+1)²*(1-p)^k
=p*[1+(1-p)]/[1-(1-p)]³ 由②
=(2-p)/p²

∴D(X)= E(X²)-[E(X)]²
=(2-p)/p²-1/p²
=(1-p)/p²
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式