展开全部
已知:角A=36度,AB=AC,∴∠C=∠ABC=72°。
已知:BD平分角ABC,∴∠CBD=∠ABD=36°。
在△ABC和△BCD中,∠A=∠CBD=36°,∠C=∠BCD=72°,∠ABC=∠BDC=72°,
∴△ABC∽△BCD(角、角、角)
(2)、
设AB=AC=1,则 BC²=2AB²-2AB²cos∠A=2-2cos36°=2{1-[√5+1]/4}=(3-√5)/2.
DC/BC=BC/AB
DC=BC²/AB=[(3-√5)/2]/1=0.382
AD=1-DC=0.618
∴D是AC的黄金分割点。
求采纳为满意回答。
已知:BD平分角ABC,∴∠CBD=∠ABD=36°。
在△ABC和△BCD中,∠A=∠CBD=36°,∠C=∠BCD=72°,∠ABC=∠BDC=72°,
∴△ABC∽△BCD(角、角、角)
(2)、
设AB=AC=1,则 BC²=2AB²-2AB²cos∠A=2-2cos36°=2{1-[√5+1]/4}=(3-√5)/2.
DC/BC=BC/AB
DC=BC²/AB=[(3-√5)/2]/1=0.382
AD=1-DC=0.618
∴D是AC的黄金分割点。
求采纳为满意回答。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |