线性代数,矩阵可逆证明
1个回答
展开全部
A^m=0
那么
E-A^m=E
即(E-A)(E+A+A^2+A^3+……+A^m-1)=E
而矩阵可逆的定义是:
在线性代数中,给定一个n阶方阵A,
若存在一n阶方阵B使得AB=BA=E(或AB=E、BA=E任满足一个),其中E为n阶单位矩阵,则称A是可逆的,且B是A的逆阵,记作A^(-1)。
所以显然E-A是可逆的,
其逆矩阵就是E+A+A^2+A^3+……+A^m-1
那么
E-A^m=E
即(E-A)(E+A+A^2+A^3+……+A^m-1)=E
而矩阵可逆的定义是:
在线性代数中,给定一个n阶方阵A,
若存在一n阶方阵B使得AB=BA=E(或AB=E、BA=E任满足一个),其中E为n阶单位矩阵,则称A是可逆的,且B是A的逆阵,记作A^(-1)。
所以显然E-A是可逆的,
其逆矩阵就是E+A+A^2+A^3+……+A^m-1
追问
E-A^m=E
?
即(E-A)(E+A+A^2+A^3+……+A^m-1)=E
追答
这个数学公式不知道么?
a^n -b^n
=(a-b)(a^n-1 +a^n-2 *b+ ……+ a *b^n-2 +b^n-1)
那么在这里,
E-A^m
=E^m -A^m
=(E-A)(E^m-1 +E^m-2 *A+ ……+ E *A^m-2 +A^m-1)
=(E-A)(E+A+A^2+A^3+……+A^m-1)
当然就得到了
(E-A)(E+A+A^2+A^3+……+A^m-1)=E
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询