可逆矩阵性质的证明

证明:(AB)^-1=B^-1A^-1我的证明是(AB)(AB)^-1=E=>A[B(AB)^-1]=AA^-1=>B(AB)^-1=A^-1=>B(AB)^-1=EA^... 证明:(AB)^-1 = B^-1 A^-1

我的证明是
(AB) (AB)^-1 = E
=> A[B(AB)^-1] = AA^-1
=> B(AB)^-1 = A^-1
=> B(AB)^-1 = EA^-1
=> B(AB)^-1 = BB^-1 A^-1
=> (AB)^-1 = B^-1 A^-1

我的疑问是为什么不能是:
(AB) (AB)^-1 = E
=> A[B(AB)^-1] = AA^-1
=> B(AB)^-1 = A^-1
=> B(AB)^-1 = A^-1E
=> B(AB)^-1 = A^-1 B^-1 B
=> (AB)^-1 = A^-1 B^-1

尽管我知道(AB)^-1 = A^-1 B^-1 是错的
展开
taixigou购物与科学
2011-05-24 · 在这里交流科学与数学,关注生活
taixigou购物与科学
采纳数:1035 获赞数:4900

向TA提问 私信TA
展开全部
B(AB)^-1 = A^-1 B^-1 B
=> (AB)^-1 = A^-1 B^-1
这一步是不成立的,你的依据是什么?
B(AB)^-1 = BB^-1 A^-1
=> (AB)^-1 = B^-1 A^-1
上面这个是两边同乘以 B^-1得到的
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
大钢蹦蹦
推荐于2017-09-23 · TA获得超过3.2万个赞
知道大有可为答主
回答量:5493
采纳率:65%
帮助的人:1522万
展开全部
(AB) (AB)^-1 = E
=> A[B(AB)^-1] = AA^-1
=> B(AB)^-1 = A^-1
=> B(AB)^-1 = A^-1E
=> B(AB)^-1 = A^-1 B^-1 B
以上正确,以下不正确,因为矩阵不满足交换律,上面等式中的B不能约去。
=> (AB)^-1 = A^-1 B^-1
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式