可逆矩阵性质的证明
证明:(AB)^-1=B^-1A^-1我的证明是(AB)(AB)^-1=E=>A[B(AB)^-1]=AA^-1=>B(AB)^-1=A^-1=>B(AB)^-1=EA^...
证明:(AB)^-1 = B^-1 A^-1
我的证明是
(AB) (AB)^-1 = E
=> A[B(AB)^-1] = AA^-1
=> B(AB)^-1 = A^-1
=> B(AB)^-1 = EA^-1
=> B(AB)^-1 = BB^-1 A^-1
=> (AB)^-1 = B^-1 A^-1
我的疑问是为什么不能是:
(AB) (AB)^-1 = E
=> A[B(AB)^-1] = AA^-1
=> B(AB)^-1 = A^-1
=> B(AB)^-1 = A^-1E
=> B(AB)^-1 = A^-1 B^-1 B
=> (AB)^-1 = A^-1 B^-1
尽管我知道(AB)^-1 = A^-1 B^-1 是错的 展开
我的证明是
(AB) (AB)^-1 = E
=> A[B(AB)^-1] = AA^-1
=> B(AB)^-1 = A^-1
=> B(AB)^-1 = EA^-1
=> B(AB)^-1 = BB^-1 A^-1
=> (AB)^-1 = B^-1 A^-1
我的疑问是为什么不能是:
(AB) (AB)^-1 = E
=> A[B(AB)^-1] = AA^-1
=> B(AB)^-1 = A^-1
=> B(AB)^-1 = A^-1E
=> B(AB)^-1 = A^-1 B^-1 B
=> (AB)^-1 = A^-1 B^-1
尽管我知道(AB)^-1 = A^-1 B^-1 是错的 展开
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询