数列求解
设数列{An}的前n项和为Sn,若A1=4/3,An+1=3Sn,n属于正整数。(1)求数列{An}的通项公式;(2)设Bn=log2An+1,求数列{Bn}前n项和Tn...
设数列{An}的前n项和为Sn,若A1=4/3,An+1=3Sn,n属于正整数。(1)求数列{An}的通项公式;(2)设Bn=log2An+1,求数列{Bn}前n项和Tn.(3)令Cn=1/Tn,数列{Cn}的前n项和为Un,试求最小的集合[a,b),使Un属于[a,b).
展开
展开全部
a(n+1) = 3s(n) = s(n+1) - s(n),
s(n+1) = 4s(n),
{s(n)}是首项为s(1)=a(1)=4/3,公比为4的等比数列。
s(n) = (4/3)4^(n-1) = 4^n/3,
a(n+1) = 3s(n) = 4^n,
a(1) = 4/3,
n>=2时,a(n) = 4^(n-1).
b(n) = log_{2}[a(n+1)] = log_{2}4^n = 2n,
t(n) = n(n+1).
c(n) = 1/t(n) = 1/n - 1/(n+1).
u(n) = c(1)+c(2)+...+c(n-1)+c(n)
= 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/(n-1) - 1/n + 1/n - 1/(n+1)
= 1/1 - 1/(n+1)
= n/(n+1)
= 1/(1+1/n)
n>=1时,
1/n单调递减。。u(n) = 1/(1+1/n)单调递增。。
1/2 <= u(1) <= u(n) < 1.
a = 1/2,
b = 1.
s(n+1) = 4s(n),
{s(n)}是首项为s(1)=a(1)=4/3,公比为4的等比数列。
s(n) = (4/3)4^(n-1) = 4^n/3,
a(n+1) = 3s(n) = 4^n,
a(1) = 4/3,
n>=2时,a(n) = 4^(n-1).
b(n) = log_{2}[a(n+1)] = log_{2}4^n = 2n,
t(n) = n(n+1).
c(n) = 1/t(n) = 1/n - 1/(n+1).
u(n) = c(1)+c(2)+...+c(n-1)+c(n)
= 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/(n-1) - 1/n + 1/n - 1/(n+1)
= 1/1 - 1/(n+1)
= n/(n+1)
= 1/(1+1/n)
n>=1时,
1/n单调递减。。u(n) = 1/(1+1/n)单调递增。。
1/2 <= u(1) <= u(n) < 1.
a = 1/2,
b = 1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询