如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE. (1)图1

如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE.(1)图1中是否存在与∠BDE相等的角?若存在,请找... 如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE. (1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由; (2)求证:BE=EC; (3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a时,求BE的长(用含k、a的式子表示). 展开
 我来答
小宣994
2014-08-25 · 超过59用户采纳过TA的回答
知道答主
回答量:198
采纳率:0%
帮助的人:65.8万
展开全部
(1)∠DCA=∠BDE.
证明:∵AB=AC,DC=DE,
∴∠ABC=∠ACB,∠DEC=∠DCE.
∴∠BDE=∠DEC-∠DBC=∠DCE-∠ACB=∠DCA.

(2)过点E作EG∥AC,交AB于点G,如图1,
则有∠DAC=∠DGE.
在△DCA和△EDG中,
∠DCA=∠GDE
∠DAC=∠DGE
DC=DE

∴△DCA≌△EDG(AAS).
∴DA=EG,CA=DG.
∴DG=AB.
∴DA=BG.
∵AF∥EG,DF=EF,
∴DA=AG.
∴AG=BG.
∵EG∥AC,
∴BE=EC.

(3)过点E作EG∥AC,交AB的延长线于点G,如图2,
∵AB=AC,DC=DE,
∴∠ABC=∠ACB,∠DEC=∠DCE.
∴∠BDE=∠DBC-∠DEC=∠ACB-∠DCE=∠DCA.
∵AC∥EG,
∴∠DAC=∠DGE.
在△DCA和△EDG中,
∠DCA=∠GDE
∠DAC=∠DGE
DC=DE

∴△DCA≌△EDG(AAS).
∴DA=EG,CA=DG
∴DG=AB=1.
∵AF∥EG,
∴△ADF∽△GDE.
AD
DG
DF
DE

∵DF=kFE,
∴DE=EF-DF=(1-k)EF.
AD
1
kEF
(1?k)EF

∴AD=
k
1?k

∴GE=AD=
k
1?k

过点A作AH⊥BC,垂足为H,如图2,
∵AB=AC,AH⊥BC,
∴BH=CH.
∴BC=2BH.
∵AB=1,∠ABC=α,
∴BH=AB?cos∠ABH=cosα.
∴BC=2cosα.
∵AC∥EG,
∴△ABC∽△GBE.
BC
BE
AC
GE

2cosα
BE
1
k
1?k

∴BE=
2kcosα
1?k

∴BE的长为
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消