如图所示,已知抛物线C:x²=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的
如图所示,已知抛物线C:x²=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点)。⑴证明:动点D在定...
如图所示,已知抛物线C:x²=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点)。
⑴证明:动点D在定直线上
⑵作C的任意一条切线L,(不含x轴),与直线y=2相交于点N1,与⑴中的定直线相交于点N2,证明:lMN2l²-lMN1l²为定值,并求此定值 展开
⑴证明:动点D在定直线上
⑵作C的任意一条切线L,(不含x轴),与直线y=2相交于点N1,与⑴中的定直线相交于点N2,证明:lMN2l²-lMN1l²为定值,并求此定值 展开
1个回答
展开全部
(1)
令A(a, a²/4), B(b, b²/4)
AB:(y - b²/4)/(a²/4 - b²/4) = (x - b)/(a - b)
过M(0, 2), 从上式可得b = -8/a
BD: x = -8/a
OA: y = ax/4, D(-8/a, -2)
D在y = -2上
(2)
取抛物线上的点P(p, p²/4)
y = x²/4, y' = x/2
过P的切线斜率:k = p/2
切线: y - p²/4 = (p/2)(x - p)
令y = 2, x = c/2 + 4/c, N1(c/2 + 4/c, 2)
取y = -2,x = c/2 - 4/c, N2(c/2 - 4/c, -2)
|MN1|² = (c/2 + 4/c)² = c²/4 + 4 + 16/c²
|MN2|² = (c/2 - 4/c)² + (2 + 2)² = c²/4 - 4 + 16/c² + 16
|MN2|² - |MN1|² = 8
令A(a, a²/4), B(b, b²/4)
AB:(y - b²/4)/(a²/4 - b²/4) = (x - b)/(a - b)
过M(0, 2), 从上式可得b = -8/a
BD: x = -8/a
OA: y = ax/4, D(-8/a, -2)
D在y = -2上
(2)
取抛物线上的点P(p, p²/4)
y = x²/4, y' = x/2
过P的切线斜率:k = p/2
切线: y - p²/4 = (p/2)(x - p)
令y = 2, x = c/2 + 4/c, N1(c/2 + 4/c, 2)
取y = -2,x = c/2 - 4/c, N2(c/2 - 4/c, -2)
|MN1|² = (c/2 + 4/c)² = c²/4 + 4 + 16/c²
|MN2|² = (c/2 - 4/c)² + (2 + 2)² = c²/4 - 4 + 16/c² + 16
|MN2|² - |MN1|² = 8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询