在平面直角坐标系xoy中,已知圆C1:(x+2)2+(y-3)2=9和圆C2:(x-4)2+(y-3)2=9.(1)若直线l过点A
在平面直角坐标系xoy中,已知圆C1:(x+2)2+(y-3)2=9和圆C2:(x-4)2+(y-3)2=9.(1)若直线l过点A(-5,1),且被圆C1截得的弦长为25...
在平面直角坐标系xoy中,已知圆C1:(x+2)2+(y-3)2=9和圆C2:(x-4)2+(y-3)2=9.(1)若直线l过点A(-5,1),且被圆C1截得的弦长为25,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.
展开
展开全部
(1)设l方程为:y-1=k(x+5),圆C1的圆心到直线l的距离为d,则
∵l被圆C1截得的弦长为2
,
∴d=2,
∴d=
=2,
从而k(5k-12)=0,即k=0或k=
∴直线l的方程为:y=0或5x-12y+37=0;
(2)设点P(a,b)满足条件,
由题意分析可得直线l1、l2的斜率均存在且不为0,
不妨设直线l1的方程为y-b=k(x-a),k≠0
则直线l2方程为:y-b=-
(x-a)(6分)
∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,
∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等
即
=
整理得k(a+b)+a-b-1=0或(a-b+4)k+7-ab=0,
∵k的取值有无穷多个,
∴
或
∵l被圆C1截得的弦长为2
5 |
∴d=2,
∴d=
|-2k-3+5k+1| | ||
|
从而k(5k-12)=0,即k=0或k=
5 |
12 |
∴直线l的方程为:y=0或5x-12y+37=0;
(2)设点P(a,b)满足条件,
由题意分析可得直线l1、l2的斜率均存在且不为0,
不妨设直线l1的方程为y-b=k(x-a),k≠0
则直线l2方程为:y-b=-
1 |
k |
∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,
∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等
即
|-2k-3+b-ka| | ||
|
|-
| ||||
|
整理得k(a+b)+a-b-1=0或(a-b+4)k+7-ab=0,
∵k的取值有无穷多个,
∴
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|