如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,△ABC为边长为2的正三角形,点P在A1B上,且AB⊥CP.(1)
如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,△ABC为边长为2的正三角形,点P在A1B上,且AB⊥CP.(1)证明:P为A1B中点;(2)若A1B⊥AC1...
如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,△ABC为边长为2的正三角形,点P在A1B上,且AB⊥CP.(1)证明:P为A1B中点;(2)若A1B⊥AC1,求三棱锥P-A1AC的体积.
展开
展开全部
解:(Ⅰ)证明:取AB中点Q,
∴CQ⊥AB
又∵AB⊥CP,∴AB⊥平面CPO
∴AB⊥QP
∴P为A1B的中点(4分)
(Ⅱ)连接AB1,取AC中点R,连接A1R,
则BR⊥平面A1C1CA,由已知A1B⊥AC1,
∴A1R⊥AC1,∴△AC1C~△A1RA
∴
=
,∴AC=
A1A(6分)
则AA1=
,则AC=2
∵VP?A1AC=Vc?A1AP
S△A1AP=
?
?1=
∴h=
(10分)
∴VP?A1AC=VC?A1AP=
?
∴CQ⊥AB
又∵AB⊥CP,∴AB⊥平面CPO
∴AB⊥QP
∴P为A1B的中点(4分)
(Ⅱ)连接AB1,取AC中点R,连接A1R,
则BR⊥平面A1C1CA,由已知A1B⊥AC1,
∴A1R⊥AC1,∴△AC1C~△A1RA
∴
C1C |
AC |
| ||
A1A |
2 |
则AA1=
2 |
∵VP?A1AC=Vc?A1AP
S△A1AP=
1 |
2 |
2 |
| ||
2 |
∴h=
3 |
∴VP?A1AC=VC?A1AP=
1 |
3 |
|