如图(1)四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE.(1)

如图(1)四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE.(1)求证:△ABC≌△ADE;(2)求证... 如图(1)四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE.(1)求证:△ABC≌△ADE;(2)求证:CA平分∠BCD;(3)如图(2),设AF是△ABC的BC边上的高,求证:EC=2AF. 展开
 我来答
危月叹阴晴6732
推荐于2017-10-10 · TA获得超过199个赞
知道答主
回答量:118
采纳率:0%
帮助的人:154万
展开全部
(1)证明:如图①,∵∠ABC+∠ADC=180°,∠ADE+∠ADC=180°,
∴∠ABC=∠ADE,
在△ABC与△ADE中,
∠BAC=∠DAE
AB=AD
∠ABC=∠ADE

∴△ABC≌△ADE(ASA).

(2)证明:如图①,∵△ABC≌△ADE,
∴AC=AE,∠BCA=∠E,
∴∠ACD=∠E,
∴∠BCA=∠E=∠ACD,即CA平分∠BCD;

(3)证明:如图②,过点A作AM⊥CE,垂足为M,
∵AM⊥CD,AF⊥CF,∠BCA=∠ACD,
∴AF=AM,
又∵∠BAC=∠DAE,
∴∠CAE=∠CAD+∠DAE=∠CAD+∠BAC=∠BAD=90°,
∵AC=AE,∠CAE=90°,
∴∠ACE=∠AEC=45°,
∵AM⊥CE,
∴∠ACE=∠CAM=∠MAE=∠E=45°,
∴CM=AM=ME,
又∵AF=AM,
∴EC=2AF.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式